Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury.
نویسندگان
چکیده
The burst of reactive oxygen species (ROS) during reperfusion of ischemic tissues can trigger the opening of the mitochondrial permeability transition (MPT) pore, resulting in mitochondrial depolarization, decreased ATP synthesis, and increased ROS production. Rapid recovery of ATP upon reperfusion is essential for survival of tubular cells, and inhibition of oxidative damage can limit inflammation. SS-31 is a mitochondria-targeted tetrapeptide that can scavenge mitochondrial ROS and inhibit MPT, suggesting that it may protect against ischemic renal injury. Here, in a rat model of ischemia-reperfusion (IR) injury, treatment with SS-31 protected mitochondrial structure and respiration during early reperfusion, accelerated recovery of ATP, reduced apoptosis and necrosis of tubular cells, and abrogated tubular dysfunction. In addition, SS-31 reduced medullary vascular congestion, decreased IR-mediated oxidative stress and the inflammatory response, and accelerated the proliferation of surviving tubular cells as early as 1 day after reperfusion. In summary, these results support MPT as an upstream target for pharmacologic intervention in IR injury and support early protection of mitochondrial function as a therapeutic maneuver to prevent tubular apoptosis and necrosis, reduce oxidative stress, and reduce inflammation. SS-31 holds promise for the prevention and treatment of acute kidney injury.
منابع مشابه
Novel cardiolipin therapeutic protects endothelial mitochondria during renal ischemia and mitigates microvascular rarefaction, inflammation, and fibrosis.
Microvascular rarefaction, or loss of microvascular density, is increasingly implicated in the progression from acute ischemic kidney injury to chronic kidney disease. Microvascular dropout results in chronic tissue hypoxia, interstitial inflammation, and fibrosis. There is currently no therapeutic intervention for microvascular rarefaction. We hypothesize that capillary dropout begins with isc...
متن کاملProtection of cardiac mitochondria by diazoxide and protein kinase C: implications for ischemic preconditioning.
Mitochondrial ATP-sensitive K (mitoK(ATP)) channels play a central role in protecting the heart from injury in ischemic preconditioning. In isolated mitochondria exposed to elevated extramitochondrial Ca, P(i), and anoxia to simulate ischemic conditions, the selective mitoK(ATP) channel agonist diazoxide (25-50 microM) potently reduced mitochondrial injury by preventing both the mitochondrial p...
متن کاملCaffeic Acid Phenethyl Ester Reduces Ischemia-Induced Kidney Mitochondrial Injury in Rats
During partial nephrectomy, the avoidance of ischemic renal damage is extremely important as duration of renal artery clamping (i.e., ischemia) influences postoperative kidney function. Mitochondria (main producer of ATP in the cell) are very sensitive to ischemia and undergo damage during oxidative stress. Finding of a compound which diminishes ischemic injury to kidney is of great importance....
متن کاملReduction of Ischemia/Reperfusion Injury With Bendavia, a Mitochondria-Targeting Cytoprotective Peptide
BACKGROUND Manifestations of reperfusion injury include myocyte death leading to infarction, contractile dysfunction, and vascular injury characterized by the "no-reflow" phenomenon. Mitochondria-produced reactive oxygen species are believed to be centrally involved in each of these aspects of reperfusion injury, although currently no therapies reduce reperfusion injury by targeting mitochondri...
متن کاملMitochondria-targeted peptide SS-31 attenuates renal injury via an antioxidant effect in diabetic nephropathy.
Oxidative stress is implicated in the pathogenesis of diabetic kidney injury. SS-31 is a mitochondria-targeted tetrapeptide that can scavenge reactive oxygen species (ROS). Here, we investigated the effect and molecular mechanism of mitochondria-targeted antioxidant peptide SS-31 on injuries in diabetic kidneys and mouse mesangial cells (MMCs) exposed to high-glucose (HG) ambience. CD-1 mice un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 22 6 شماره
صفحات -
تاریخ انتشار 2011